

QB50 Science Units

D. O. Kataria, Alan Smith

Mullard Space Science Laboratory, Department of Space and Climate Physics University College London, London, UK

3rd QB50 Workshop, VKI, Brussels

Selected Sensor Sets

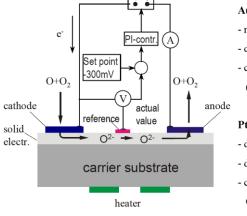
- Set 1
 - Neutral Mass Spectrometer
 - Flux-Φ-Probe Experiment (FIPEX)
 - 2 corner cube laser retroreflectors (CCR)
 - Thermistors/thermocouples/RTD
 - Volume 770 cm³
 - Mass 660g

- S et 2
 - Ion Mass Spectrometer
 - A set of 4 Langmuir probes
 - 2 corner cube laser retroreflectors (CCR)
 - Thermistors/thermocouples/RTD
 - Volume 717 cm³
 - Mass 680g

Qty in QB50 network: 20

- Qty in QB50 network: 20

Estimated values based on details provided by sensor providers.


Science/resource envelope trades in progress Mass, power, volume, duty cycle, funding

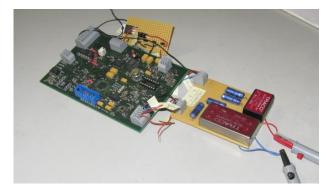
3rd QB50 Workshop, VKI, Brussels

Flux-Φ-Probe Experiment – FIPEX

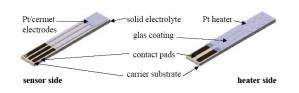
T. Schmiel, S. Fasoulas, Dipl.-Ing. Andreas Weber, TU Dresden

Au-cathode

- non-dissociative adsorption


- detection of (AO)

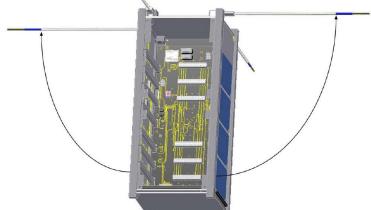
- cathode reaction (simplified) $(O_2)+ \mathbf{O} + 2\mathbf{e}^- \rightarrow \mathbf{O}^{2^-} + (O_2)$


Pt-cathode

- dissociative adsorption
- detection of AO and O_2
- cathode reaction (simplified)

 $O_2 + O + 6e^- \rightarrow 3 O^{2-}$

3rd QB50 Workshop, VKI, Brussels



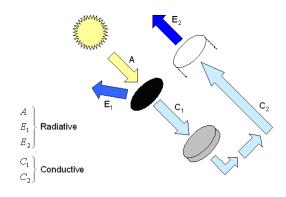

Sensor unit	
Dimension	36 x 30 x 12 mm ³
No. of sensors	2
Type of sensors	AO (atomic oxygen)
Mass	15g (excluding harness)
Field of View	~180 deg (free flow)
Heating Power	< 1,6 W
Electronic / PCB	
Sensor	1 + 1 spare, no parallel operation
Dimension ^{#1}	80 x 100 x 10 mm ³
Power (includes sensor	12 V: 2700 mW ^{#2}
heating power)	5 V: 100 mW
	3,3 V: 200 mW
Mass	70g (excluding harness)

Multi-needle Langmuir probe – mNLP

T. André Bekkeng and J. Moen, University of Oslo

Current measurement range	3 decades (i.e. 1 nA to 1 μ A), but adjustable by in-flight	
	automatic gain control	
Electron density range	10^8 m ⁻³ to 10^{12} m ⁻³ (adjustable to match mission	
	requirements)	
Accuracy	16 bit raw data, but downsampled to 8 / 10 / 12 bit data	
	product	
Sampling rates	Up to 7 kHz, adjustable by uploadable selection commands	

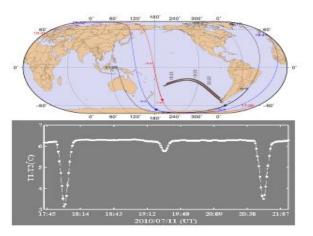
Mode: Complete scientific coverage	~1.25 MB per orbit
On-board processed: 100% Duty cycle:	
Mode: Partial scientific coverage	~312.5 kB per orbit
On-board processed: 25% Duty cycle:	
Mode: Irregularity survey mode	8.6 kB per orbit
100% Duty cycle	

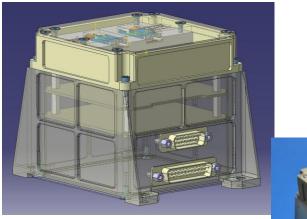

3rd QB50 Workshop, VKI, Brussels

Microcalometric irradiance monitoring - QBOS M.van RUYMBEKE, JPh.NOEL, Royal Observatory of Belgium

Abstract:

The bolometric part of the SOVAP instrument (SOVAP-BOS) embarqued on the PICARD satellite will be a space premiere. Its sensing element is based on the monitoring with micro-temperature differential thermometers placed on a thermic shunt. A 120dB dynamical range could be achieved with a ten seconds sampling rate integrator based on the counting of frequency modulated output. A second paper published in the next Ciel&Terre will overview some preliminary examples of results achieved with the BOS.

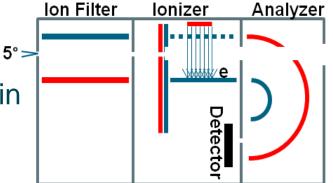



FIGURE: The solar eclipse.

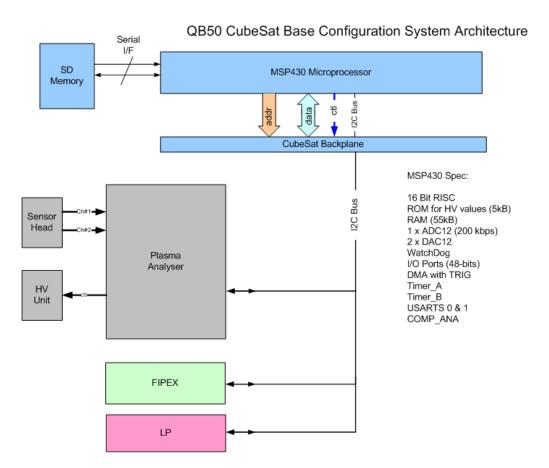
3rd QB50 Workshop, VKI, Brussels

Ion and Neutral Mass Spectrometer – INMS

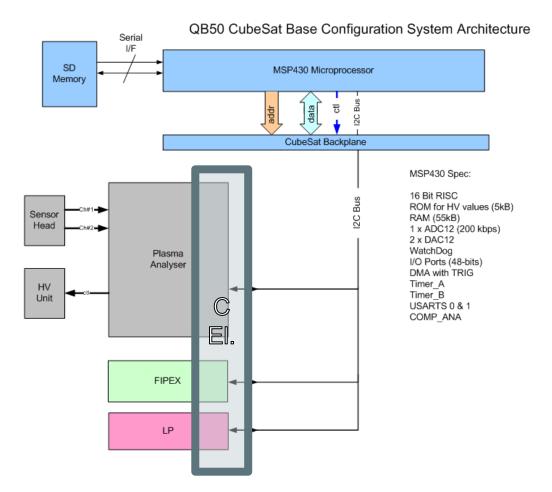
- D. O. Kataria, Alan Smith, MSSL, UK
- CubeSat compatible "standalone" package
 - 10 x 10 x 4 cm³


	Mode B
	lonosphere
Particle Type	lons
Key View direction	Ram
PROPERTIES	
Energy range (eV)	0.1 to 28
Energy resolution (%)	< 3
Elevation resolution	5 °
Azimuth resolution	5 °
Sample Time	4ms
Energy Sweep time	1s
Energy Sweep steps	256

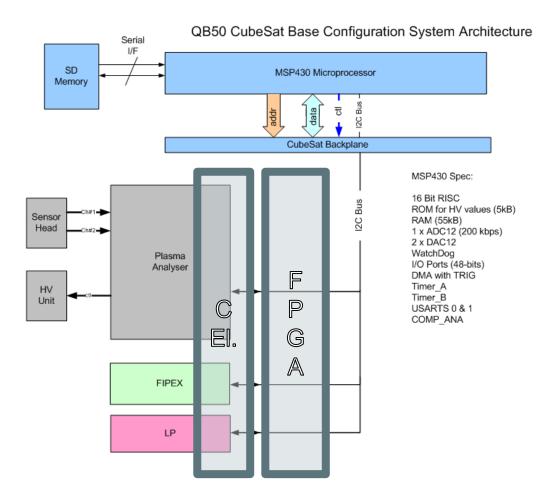
3rd QB50 Workshop, VKI, Brussels


Neutral Particle Analyser development

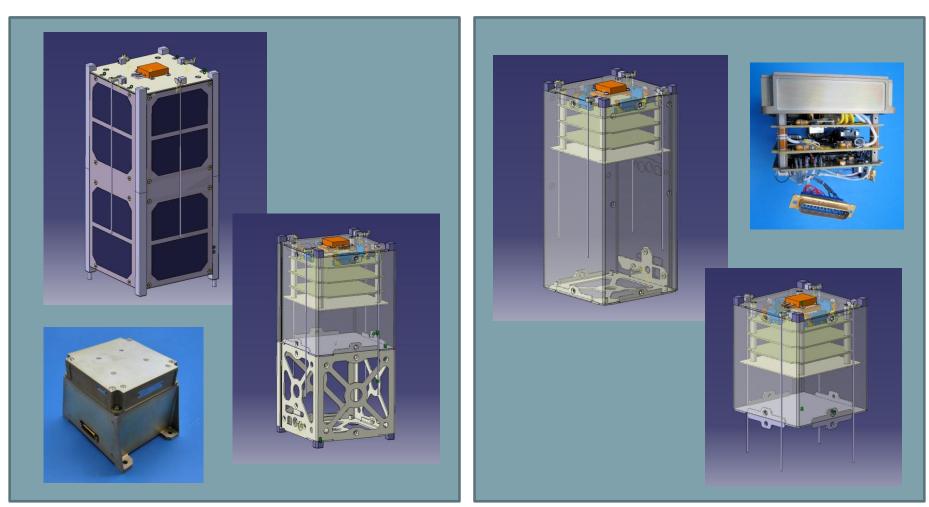
- ChaPS analyser combined with loniser
- Optimised for resolving the major constituents in the lower thermosphere, i.e., O, O₂, N₂
- Ionizer development
 - Proof-of-concept testing completed
 - Design definition and Electron Optics in progress
 - Integration and testing in late summer


Science Unit: Design philosophy

3rd QB50 Workshop, VKI, Brussels

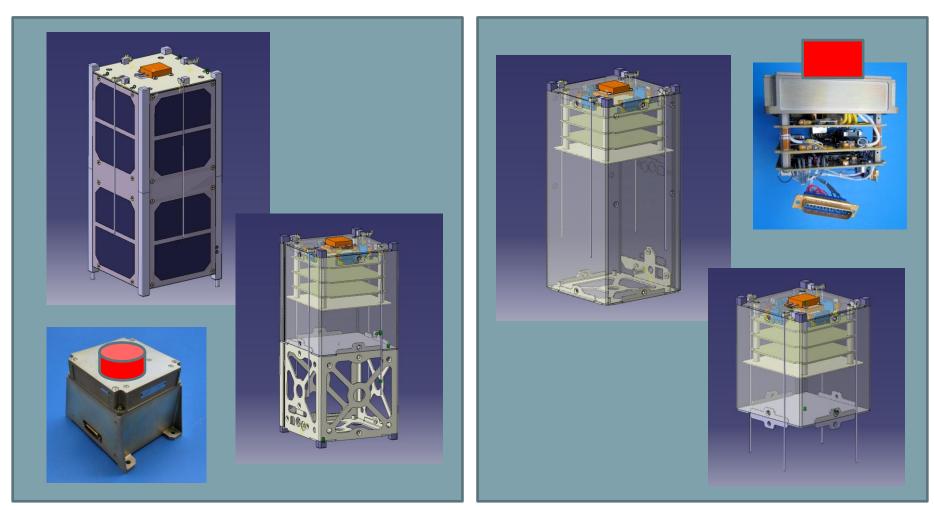


Science Unit: Design philosophy


Science Unit: Design philosophy

•

Accommodation trade



3rd QB50 Workshop, VKI, Brussels

.

Accommodation trade

3rd QB50 Workshop, VKI, Brussels

.

Interface Control Document

- Preliminary ICD
 - Based on current sensor sets
 - Resource envelope not expected to increase
- "Living" document
 - Not for long though
- Update to be released 5th March
 - Will include final release date

Summary

- Sensor selection summary
- Science/resource envelope trade
 Mass, power, volume, duty cycle, funding
- Accommodation trade
- Timeline