

QB50 ADCS + GPS

2.2.12

Professor Vaios Lappas

Email: v.lappas@surrey.ac.uk

Contents

- University of Surrey Role in QB50
- Surrey ADCS Cubesat heritage
- QB50 ADCS Mission Requirements
- QB50 ADCS Issues
- QB50 ADCS Hardware/Solution (Optional)

Surrey Role in QB50

- Provide ADCS tailored Solution
- Provide ADCS Support (software/hardware)
- Provide systems engineering support
- Provide the Inflatesail Deorbiting nanosat (IOD)

SSC CubeSat Projects: STRaND-1

- Demonstration mission: demonstrate key technologies for nanosatellites:
 - 3-axis agile attitude control
 - Low-cost computing platform
 - Wireless communications
 - Mobile smartphone use in space application
- Sensors
 - CubeSense combined Sun and Nadir optical sensor.
 - Uses 2 CMOS camera's with wide FOV (190 degrees) lenses. Sun sensor has neutral density filter to reduce intensity.
 - Magnetometer
- Actuators
 - Magnetorquers
 - 3x Reaction wheels
- Other Cubesat missions in development:
 - Cubesail, DEORBITSAIL, Inflatesail, AgileSAT, InspectorSAT, CleanSAT

SSC CubeSat Projects: STRaND-1 Launch: July 2012

UNIVERSITY OF

SSC ADCS Components: CubeSense 50 SURREY

- Combined Sun and Nadir optical sensor
- 2 CMOS camera's with wide FOV (190 degrees) lenses
- Sun sensor has neutral density filter to reduce intensity
- 2 configurations for camera mounting. (can also be connected via harness)

- **ADCS-1: Velocity-vector Stabilization:** The long axis of the CubeSat shall be aligned with the velocity vector in such a way as to point the experiment package in the direction of motion.
- **ADCS-2:** Velocity-vector Pointing Accuracy: The CubeSat attitude shall be controlled such that there is less than 5 degrees between the long axis of the CubeSat and the velocity vector (3-sigma, 95% confidence), down to 250km altitude. This should be achieved below 200km. There is no mission level requirement for roll angle.
- ADCS-3: Tip-off Rates: The CubeSat shall be able to recover from tip-off rates of up to 100 degrees/second
- **ADCS-4:** Velocity-vector Attitude Knowledge: The CubeSat shall measure its velocity-vector attitude to within ±1^o at the time of receiving data from the payload and link that attitude report to the data.
- **ADCS-5: De-tumble:** CubeSats should be able to de-tumble and stabilise (commissioning) within 2 days [TBC].

QB50 ADCS Issues

- QB50 ADCS system should be:
 - Robust, simple, achieve the QB50 requirements
 - Compact and low mass
 - Low power
 - Detumble cubesat quickly
 - Some ADCS software should be available..
 - Have system ready soon!
 - Very cheap...

QB50 ADCS Tailored Solution

- 3-axis stabilized attitude control
- Accurate position, velocity & time from GPS
- < 1° roll, pitch, yaw stability (sunlit part of orbit)
- Low power: 2W (3-axis mode)
- Compact size: 0.4U (Full configuration with GPS)
- Low Cost
- Developed with Stellenbosch University (SA)

QB50 ADCS Architecture

Coarse sun sensor					
Visibility	360°				
Accuracy	< 10°				
Sun & nadir sensor					
Mass	110 g				
Power use	360 mW				
Update rate	2 Hz				
Sun sensor range	± 90°				
Nadir sensor range	± 50°				
Sun sensor accuracy					
within 40° of boresight	0.3°				
full range	< 2°				
Nadir sensor accuracy	0.18°				

ADCS Sensors for QB50: Magnetometer

	Honewell HMC5843			
accuracy	10 milli-gauss			
Dimensions	4 x 4 x 2mm			
Mass	IC			
Power	< 1mW			

Magnetic torquer rods				
Mass	22 g			
Dimensions	60 x 8 x 8 mm			
Maximum magnetic dipole momen	t 0.2 Am ²			
Y momentum wheel				
Mass	25 g			
Maximum momentum	0.03 Nms			
	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			

QB50 GPS Options

- Exploring 3 options:
 - Novatek GPS

- SSTL GPS

SSBV Reconfigurable GPS

Processing

Processor	32-bit ARM Cortex- M3
Clock frequency	4-48 MHz
EEPROM	256 KB
Code Memory (flash)	4 MB
Data Memory (EDAC protected SRAM)	2x 1 MB
MicroSD support	Up to 2 GB
Communication	2x I ² C
	2x UART
Power use	< 200 mW

QB50 ADCS Options

Option	1	2	3	4	5	6
	With GPS		Without GPS			
	Full ADCS suite	Full suite excl	Attitude sensing	Full ADCS suite	Full suite excl	Attitude sensing
	(ADCS OBC,	OBC	only: Excludes	(ADCS OBC,	OBC	only: Excludes
	CubeSense,		OBC, torquer	CubeSense,		OBC, torquer
	ADCS i/f,		rods & wheel	ADCS i/f,		rods & wheel
	sensors,			sensors,		
	actuators, GPS)			actuators)		
Mass	410 g	330 g	240 g	380 g	300 g	210 g
Dimensions (PCB stack						
height)	40 mm	30 mm	30 mm	30 mm	18 mm	18 mm
		1.5 W				
	2 W (3-axis	(detumbling			0.5 W	
	mode, GPS	mode, GPS	1.1 W (GPS	1 W (3-axis	(detumbling	
Power	enabled)	enabled)	enabled)	mode)	mode)	0.5 W

- A tailored ADCS system for QB50 is being developed
 - Low mass, volume, cost
 - Development of the University of Surrey and Stellenbosch University (SA)
 - System includes OBC (for payload/subsystems)
 - Detumbling and basic ADCS software to be provided with Surrey ADCS system
 - Can use GPS for real time measurements
 - Full option (with OBC/GPS): 0.4U, 410 g, 2W
 - Available to order from 20.2.12

Contact Information: Professor Vaios Lappas Email: v.lappas@surrey.ac.uk

Thank you!