

Sensors and Science

Dhiren Kataria, Craig Leff, Alan Smith, Rahil Chaudery,
Peter Coker, Anasuya Aruliah

Mullard Space Science Laboratory

Ruedeger Reinhard, Cem Ozan Asma Von Karman Institute for Fluid Dynamics

Sensor Providers and SPWG members

Key Tasks

- Sensor and Science related working group activities
 - Scientific objectives, sensor performance, resources, accommodation, production, schedule, cost
- Development of sensor demonstration units
- Systems engineering of the Science Unit
- Procurement, development, manufacturing, testing and integration of the sensor set with CubeSats developed by the universities

On-going Activities

- Science Unit design options and resource tradeoffs
 - Design options driven by SSWG recommendations
 - Accommodation, assessments for single/ combinations of sensors, resources evaluated (mass, power, volume, funding).
 - Common payload electronics design and associated trade-offs.
- Final recommended baseline: single sensors sets with integrated thermistors and free-issue of CCRs
 - Driven by resource limitations
 - Communicated by the PI to the CubeSat teams during the one-to-one meetings.

Selected Sensor Sets

Adopted for implementation

Set 1

Ion-Neutral Mass Spectrometer (INMS) 2 corner cube laser retroreflectors (CCR)* Thermistors/thermocouples/RTD (TH)

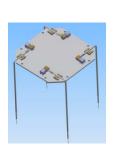
Set 3

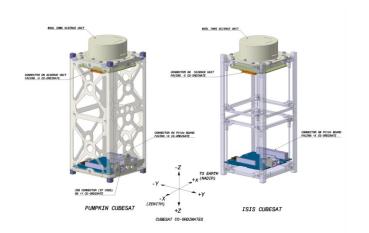
A set of 4 Langmuir probes (MNLP) 2 corner cube laser retroreflectors (CCR)* Thermistors/thermocouples/RTD (TH)

* Offered as an option

Set 2

Flux-Φ-Probe Experiment (FIPEX) 2 corner cube laser retroreflectors (CCR)* Thermistors/thermocouples/RTD (TH)





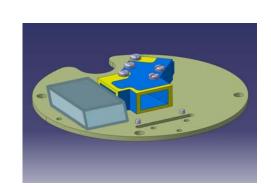
On-going activities - 1

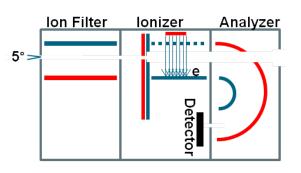
- Working on preparation of the final version of the ICDs to be released
 - Draft versions of the ICDs are ready
 - Being reviewed by systems and CubeSat experts
 - VKI aim to release by Friday, 1st of Feb, 2013

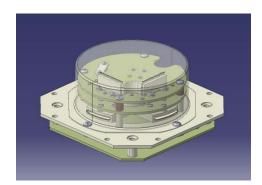
**

On-going activities - 2

- Breadboard of the INMS unit MSSL
 - Parts currently under fabrication, assembly by the middle of February
 - Flight-representative ioniser designed for the neutral mass component.
 - A special twin-headed CEM detector fabricated by the manufacturer for QB50
 - Ground Support Equipment (GSE)
- Development of electron source University of Oslo
 - Tackle the spacecraft charging issue
 - Advanced stage of development, envisaged to be completed over the next few weeks
 - Requirements and interfaces will be included in the LP ICD

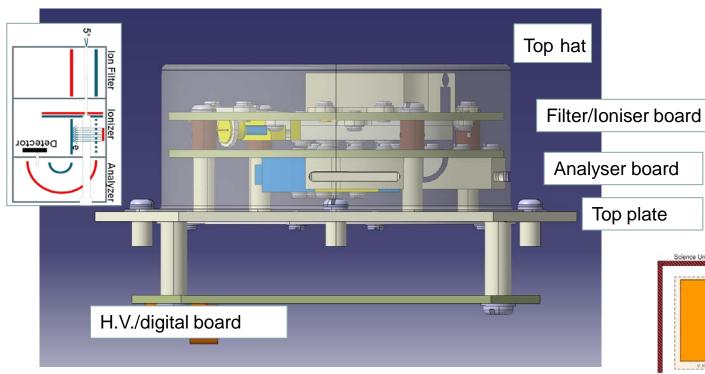


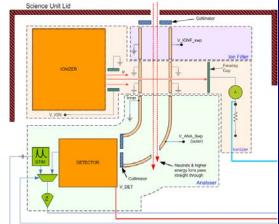

QB50 INMS – Overview



Dhiren Kataria, Alan Smith, Craig Leff, Rahil Chaudery, Matt Willock, Peter Coker, Hubert Hu, Mark Hailey, Andy Malpuss, MSSL

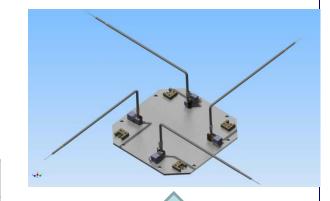
- Ion and Neutral Mass Spectrometer
- Measure dominant species
 - O, O₂, N₂, NO
- Ion sensor on TechDemoSat
 - Launch Q2-Q3 2013
- Density and temperature
- Novel Ioniser design
- Twin headed CEM
- ~400 gms, 0.5U

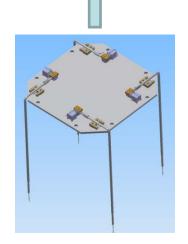




QB50 INMS - Overview

25 way micro D Interface connector

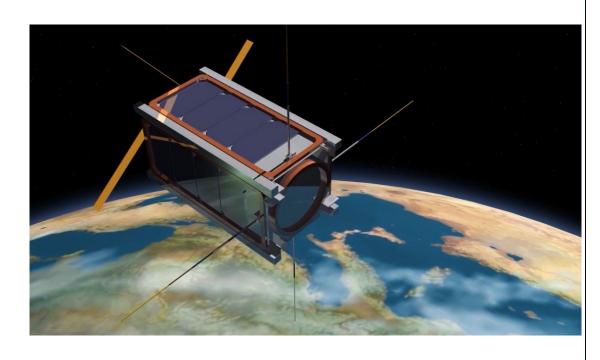

Multi-Needle Langmuir probe


T. A. Bekkeng and J. I. Moen, University of Oslo

Langmuir probe system which gives high time resolution measurements (up to 10 kHz sampling rate) of absolute electron density and spacecraft floating potential

Current measurement range	3 decades (i.e. 1 nA to 1 μA), but adjustable by in-flight automatic gain control
Electron density range	108m ⁻³ to 10 ¹² m ⁻³ (adjustable to match mission requirements)
Accuracy	24 bit raw data, but downsampled to 10 / 12 / 16 bit data product
Sampling rates	Up to 10 kHz, but fully adjustable

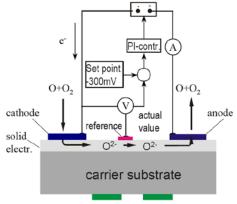
- Scaleable boom system for use on 1U, 2U and 3U CubeSats
- No voltage sweeping Fixed bias voltage on all probes
- Separate electron emitter for control of the spacecraft floating potential


Multi-Needle Langmuir probe

T. A. Bekkeng and J. I. Moen, University of Oslo

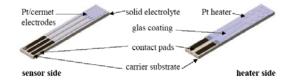
 Payload already demonstrated on rocket flight

- Launch scheduled for late 2014
- 2U CubeSat
- All subsystems are built by master- and PhD students
- Payload: m-NLP



Flux-Ф-Probe Experiment – FIPEX

T. Schmiel*, S. Fasoulas+, A. Weber*, *TU Dresden Germany, +Uni Stuttgart Germany



heater

Au-cathode

- non-dissociative adsorption
- detection of (AO)
- cathode reaction (simplified)

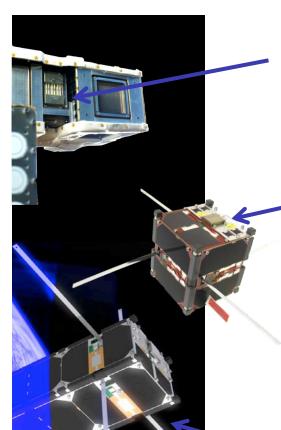
$$(O_2)+O+2e^- \rightarrow O^{2-}+(O_2)$$

Pt-cathode

- dissociative adsorption
- detection of AO and O2
- cathode reaction (simplified)

$$O_2 + O + 6e^- \rightarrow 3 O^{2-}$$

Sensor unit			
Dimension	36 x 30 x 12 mm³		
No. of sensors	2		
Type of sensors	AO (atomic oxygen), Time dependent		
Mass	15g (excluding harness)		
Field of View	~180 deg (free flow)		
Heating Power	< 1,6 W		
Electronic / PCB			
Sensor	1 + 1 spare, no parallel operation		
Dimension	80 x 100 x 10 mm³ (form factor variable)		
Power (includes sensor	5 V: switch on: 2500 mW;		
heating power)	ng power) active measurement: 2000 mW		
	3,3 V: 100 mW		
Mass	70g (excluding harness)		


Elektronic FIPEX



Flux-Φ-Probe Experiment – **FIPEX**

T. Schmiel*, S. Fasoulas+, A. Weber*, *TU Dresden Germany, *Uni Stuttgart Germany

Sensor Unit on ISS

Sensor Unit on CubeSat SOMP-II

Sensors for QB50

Mission on ISS:

Status: 572 days succeessfully operation in 2008

2) Precursor Flight: on CubeSat SOMP

Status: Ready for launch **April 2013**

Further development for QB50/SOMP-II:

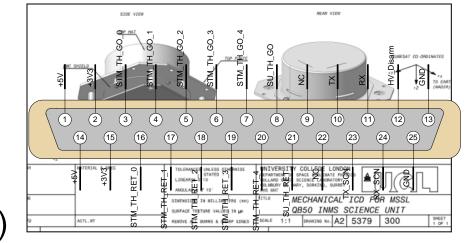
Status: Ground testing

Sensor Unit for QB50 containing max. 3 sensors

Development of demonstration units

 Schedule for production of the sensors being updated and is being iterated with consortium

# Info	Title	# Prede Expected Star				2 / 2012	Q3 / 2012	Q4 / 2		Q1 / 2013	Q2 / 2013	Q3 / 2013	Q4
0 4 🕮	☐ MSSL QB50 Science Unit Schedule	5/23/12	ete 0%		1 02 03 04 ence Unit Schedule	05 06	07 08 09	10 11	12	01 02 03	04 05 06	07 08 09	10
1 9	_ `		0%	M33L QB30 3Cle									
2 4)	QB50 Selection Cmte	6/11/12	0%		QB50 Selection C and tech trade-offs	•							
3 4	Eng and tech trade-offs	5/23/12	0%	Eng a	Science Unit Re	_							
4 4	Science Unit Reqmts freeze	7/31/12	0%	00 d b			_						
5 4	BB and mechanical design, build and			BB and mechan	nical design, build		11.4 months		_				
-	QB50 workshops, reviews and CEM4	9/4/12	0%		QB50 workshop	s, reviews a			_				
6 4	Science Unit PDR	12/7/12	0%					Unit PDR	Q				
7 🕽	SU ICD freeze	12/9/12	0%					D freeze	•				
8 🕹	MICD freeze	12/9/12	0%					D freeze	\Q				
9 4	5th QB50 WS: PDR prep	1/28/13	0%					0850 WS: PI		•			
10 4	QB50 Contracts signed	1/15/13	0%					Contracts	Ī	2.6			
11 4	Functional SU simulator delivery (plu		0%		Functional SU	simulator o	delivery (plus ISIS						
12 4	50 CubeSats selected	2/28/13	0%					50 Cube		•			
13 🜒	CubeSat PDRs for QB50 teams	4/1/13	0%					CubeSat F	DRs for		1.1m		
14 4	Science Unit CDR	5/15/13	0%							Science Unit (· ·		
15 🗳	SU Simulator firmware update	6/10/13	0%						SU :	Simulator firmwa			
16 4	QM and mechanical build, test, qual,	5/16/13	0%				QM	and mecha		uild, test, qual, a		onths	
17 🗳	6th QB WS: sensor details	6/7/13	0%						6	th QB WS: senso	r details 🔷		
18 🔮	Demonstrator (BB) SU delivery	7/31/13	0%							Demonstrat	or (BB) SU delivery	•	
19 🕘 🖽	Production and staged delivery of SUs	11/4/13	0%							1	roduction and sta	ged delivery of	SUs
20 🜒	CubeSat CDRs (Month 24)	1/6/14	0%									CubeSat C	DRs (N
21 🔮	7th QB WS: CDR Closure	1/28/14	0%									7th Qi	B WS:
22 🗳	CubeSat Delivery	1/30/15	0%										
23 🔮	FRR/FM deliveries to ISIS	12/1/14	0%										
24 🗳	Launch Campaign	2/2/15	0%										
25 🜒	QB50 Flight Ops	4/30/15	0%										
26 😃	Final QB50 WS	QB50/5th W	/orksl	hon VKI	29th	lanu	ary 20	13					
100		QDOO OHI VI	UINO	nop, viti	20111	Janu	iary 20	10					



Interfaces

- Mechanical top lid
 - Keep out zones
- Electrical
 - 25 pin MDM

- Serial UART link (was I²C)
- Simulator: Arduino Development Board, software will be provided by SU team
- Attitude Control: pointing accuracy of +/-10° and pointing knowledge of +/-2°

Requirements

- Mass: < 500 gms
- Power: 500 mW with duty cycle
- Science telemetry: 2 Mbits/day
- Operations
 - Two modes full scan, peak sampling
 - Simple time-tagged on/off operations envisaged
 - Fixed data package size

Example operations

OBC_SU_ON @19:00:00

SU_STIM 0xF0 @19:02

SU_HVARM @19:03

SU_HVEN @19:04

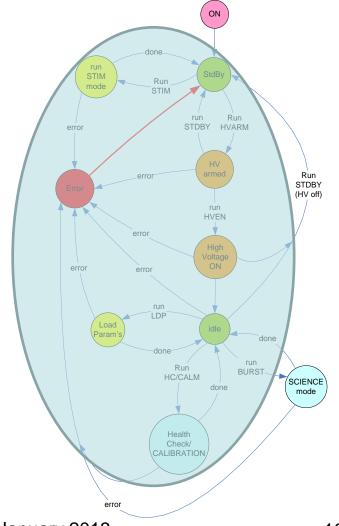
SU_HK 60 @19:06

SU CALM 5 64 28 ON ON ON @NOW

SU_LDP 0x09, 0x04,0x41,0x80,0x00, 0xFE,0x00,0x00,0x02,0xFF @NOW

SU HC 100 64 24 ON ON ON @ 19:15

SU_SCI 01 28 90 5 10 32 @19:16


SU SCI 02 28 90 5 10 500 @19:17

SU_SCI 02 28 90 5 10 500 @19:50

SU_SCI 02 28 90 5 10 500 @20:15

OBC_SU_OFF @20:02

OBC_SU_END

QB50 5th Workshop, VKI 29th January 2013

16

FIPEX Presentation

