

# **QB50**

### **PDR Procedures**

### F. Singarayar

von Karman Institute for Fluid Dynamics Rhode-Saint-Genèse (Brussels)

### 5th QB50 Workshop

29 Jan 2019 Rhode-Saint-Genèse, Belgium



1

von Karman Institute for Fluid Dynamics



#### www.QB50.eu

QB5



# **PDR Procedure Overview**



- PDR Procedure will be available on the QB50 website by 1 Feb 2013
- Each CubeSat team responsible for their own PDR
- Independent reviewer at least 1 external
- Summary of PDR sent to VKI template provided
  - QB50 PDR Summary Report
    - Compliancy Table an Excel file
- VKI will contact CubeSat teams re: non-compliancy report April 2013

29 March 2013

PDR evaluation informed to CubeSat teams – May 2013







### • Template provided – 8 sections

| CubeSat name / number | BE05 QARMAN                                                                                                                                                                        |                              |                                |              |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|--------------|
| Lead institute        | von Karman Institute (VKI)                                                                                                                                                         |                              |                                |              |
| Contact person(s)     | Isil<br>Sakraker                                                                                                                                                                   | <u>Isil.sakraker@</u>        | <u>Isil.sakraker@vki.ac.be</u> |              |
|                       | Thorsten<br>Scholz                                                                                                                                                                 | <u>scholz@vki.ac.be</u> 02 3 |                                | 02 359 9423  |
|                       | Gilles<br>Bailet                                                                                                                                                                   | <u>Gilles.bailet@</u>        | <u>vki.ac.be</u>               | 02 359 9423  |
| Other institute(s)    | University of Liege – for system integration<br>University of Stuttgart – for payload design and<br>integration<br>Astrium SAS – for ablative TPS material and<br>characterization |                              |                                |              |
| CubeSat unit          | 3U                                                                                                                                                                                 |                              |                                |              |
| Science payload       | N/A or Set #1 – INMS                                                                                                                                                               |                              |                                |              |
| Other payload         | Thermal protection system (TPS)                                                                                                                                                    |                              |                                |              |
| Ground station        | Located at VKI (to be built)                                                                                                                                                       |                              |                                |              |
| Independent Reviewer  | Name                                                                                                                                                                               | Signature                    | Date signed                    | Contact info |



von Karman Institute for Fluid Dynamics





### 1) Spacecraft Design Overview

| Subsystem  | Description                                                                                                                                    |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Structural | - ISIS 3-Unit CubeSat structure                                                                                                                |
| ADCS       | <ul> <li>3 magnetorquers (GomSpace)</li> <li>2 reaction wheels (designed in house)</li> <li>1 startracker (Sinclair Interplanetary)</li> </ul> |
| EPS        | - 3U CubeSat EPS (Clyde Space)                                                                                                                 |
| OBC / OBDH | - Pumpkin CubeSat OBC                                                                                                                          |
| TT&C       |                                                                                                                                                |
| Thermal    | - Passive control (thermal tapes)                                                                                                              |

• Provide layout of spacecraft design – interconnects of power and data lines





Sys Budgets

Schedule

I. R. Comments

### 2) Payload Design Overview

- page limit 1
- no template provided
- specific to each CubeSat



Ref. & App.

QB5





### 3) Spacecraft Modes of Operation

| Spacecraft Mode           | Description                                             |
|---------------------------|---------------------------------------------------------|
| Safe mode                 | This mode is intended to keep the satellite alive. Only |
|                           | the essential components are ON all the time- such      |
|                           | as the OBC, power board and VHF receiver.               |
|                           | Transmitter is turned ON occasionally.                  |
|                           | Has uncontrolled attitude.                              |
| Recovery / De-tumble mode | This mode is used to de-tumble the spacecraft after     |
|                           | ejection from the deployment dispenser as well as to    |
|                           | recover it from any spin-ups. In addition to the        |
|                           | essential components that are ON all the time, the      |
|                           | ADCS is also operational during this mode. Any other    |
|                           | device could be turned ON by ground command.            |
| Payload operation mode    |                                                         |
| Spacecraft mode x         |                                                         |
|                           |                                                         |







### 4.1) Mass Budget

| Subsystem   | Mass (g) | Contingency (g) | Mass with contingency (g) | Fraction (%)    |
|-------------|----------|-----------------|---------------------------|-----------------|
| Structural  | 800      | 50              | 850                       | 33.1            |
| ADCS        | 150      | 20              | 170                       | 6.6             |
| EPS         | 100      | 10              | 110                       | 4.2             |
| OBC / OBDH  | 400      | 60              | 460                       | 17.9            |
| ТТ&С        | 150      | 40              | 190                       | 7.4             |
| Thermal     | 50       | 10              | 60                        | 2.3             |
| Payload     | 550      | 70              | 620                       | 24.1            |
| Integration | 100      | 10              | 110                       | 4.3             |
| Total       | 2300     | 270             | 2570                      | 100             |
| Target mass |          |                 | 3000                      |                 |
| Mass margin |          |                 | 430                       | 14.3%           |
|             |          |                 | (Target mass- Total mass  | (Target mass-   |
|             |          |                 | with contingency)         | Total mass with |
|             |          |                 |                           | contingency) /  |
|             |          |                 |                           | Target mass     |

Sys Budgets

Schedule

I. R. Comments



7

von Karman Institute for Fluid Dynamics

**Payload Design** 

SC Modes

SC Design

www.QB50.eu

Ref. & App.





### 4.2) Power Budget

|                     |                 |           | Average Duty Cycle by Mode (%) |          |                |            |  |
|---------------------|-----------------|-----------|--------------------------------|----------|----------------|------------|--|
|                     | Power           | Number of | Safe                           | Recovery | Payload        | Spacecraft |  |
| Load                | consumption (W) | Units On  | mode                           | mode     | Operation mode | mode X     |  |
| OBC                 | 0.450           | 1         | 100                            | 100      | 100            |            |  |
| VHF Rx              | 0.250           | 1         | 100                            | 100      | 100            |            |  |
| S-band              |                 |           |                                |          |                |            |  |
| Тх                  | 2               | 1         | 3                              | 3        | 3              |            |  |
| Reaction            |                 |           |                                |          |                |            |  |
| wheels              | 0.150           | 3         | 0                              | 20       | 20             |            |  |
| Power               |                 |           |                                |          |                |            |  |
| board               | 0.500           | 1         | 100                            | 100      | 100            |            |  |
| Camera              | 0.100           | 2         | 0                              | 0        | 20             |            |  |
| Sum loads (W)       |                 | 1.26      | 1.29                           | 1.31     |                |            |  |
| Efficiency          |                 | 0.80      | 0.80                           | 0.80     |                |            |  |
| Power consumed (W)  |                 |           | 1.58                           | 1.61     | 1.64           |            |  |
| Power generated (W) |                 |           | 2                              | 2        | 2              |            |  |
| Power margin        |                 |           | 21%                            | 19.5%    | 18%            |            |  |

Sys Budgets

Schedule

I. R. Comments



8

von Karman Institute for Fluid Dynamics

**Payload Design** 

SC Modes

SC Design

www.QB50.eu

Ref. & App.





### 5) Project Plans and Schedule

| Major tasks | Responsibility | Start date | Expected end date |
|-------------|----------------|------------|-------------------|
|             |                |            |                   |
|             |                |            |                   |
|             |                |            |                   |
|             |                |            |                   |
|             |                |            |                   |
|             |                |            |                   |
|             |                |            |                   |

• Provide Gantt chart



**Payload Design** SC Modes Sys Budgets

Schedule

I. R. Comments Ref. & App.



- 6) Comments by Independent Reviewer
  - page limit 1
  - all the reviewers comments should be included
- 7) References and Published Papers / Presentations

8) Appendices

- can include all supporting documents
- detailed designs of each subsystem
- calculations for different budgets







11

von Karman Institute for Fluid Dynamics







### Examples

| Requirement<br>Number       | Requirement<br>Text | Compliancy             | Verification Method                  | Action / Intent Date              |  |  |  |
|-----------------------------|---------------------|------------------------|--------------------------------------|-----------------------------------|--|--|--|
| CubeSat System Requirements |                     |                        |                                      |                                   |  |  |  |
| Structural Subsys           | tem                 |                        |                                      |                                   |  |  |  |
| QB50-SYS-x.x.x              |                     | Compliant              | By analysis (structural<br>FEA)      |                                   |  |  |  |
| QB50-SYS-x.x.x              |                     | Non<br>Compliant       | By design                            | Will comply;<br>Defer till<br>CDR |  |  |  |
| QB50-SYS-x.x.x              |                     | Partially<br>Compliant | By analysis (simulation)             | Will comply;<br>Defer till<br>FRR |  |  |  |
| QB50-SYS-x.x.x              |                     | Compliant              | By flight heritage<br>(CanX-2, 2008) |                                   |  |  |  |



13

von Karman Institute for Fluid Dynamics

www.QB50.eu

QBSO



# **Compliancy Table**

- Organized by chapters of System Requirements document
  - CubeSat System
  - Environmental Testing
  - Qualification and Acceptance Testing
  - Deployment System
  - Science Payload
- Colour coded to indicate the PDR necessary requirements
- Certain requirements are still TBC and TBD
  - in the process of maturing the science payload design
  - will be frozen before CDR of the CubeSats



14



### Conclusion

- Aim is to have a simple yet efficient PDR
- PDR Summary Report
- Compliancy Table
- Contact for any questions about PDR procedure
  - -Cem O. Asma

cem.ozan.asma@vki.ac.be

+32 2 888 9970

- Fiona Singarayar

fiona.singarayar@vki.ac.be +34 2 359 9423



von Karman Institute for Fluid Dynamics





# Thank you for your attention!



16

von Karman Institute for Fluid Dynamics