

QB50

CubeSat Preliminary Design Review Results

> Procedure Philosophy Results Lessons

6th QB50 Workshop

6 June 2013 von Karman Institute Rhode-Saint-Genèse, Belgium

von Karman Institute for Fluid Dynamics

www.QB50.eu

QB5

PDR Procedures

PDR Procedure – is available on the QB50 website by 1 Feb 2013

- Each CubeSat team responsible for their own PDR
- Independent reviewer at least 1 external
- Summary of PDR sent to VKI template provided
 - QB50 PDR Summary Report
 - Compliancy Table (an Excel file)
- VKI, ISIS and MSSL (5 reviewers) are now internally checking the submissions
- VKI contacts CubeSat teams re: non-compliancy report
- PDR evaluation informed to CubeSat teams answers expected

See Fiona Singarayar's presentation given at 5th QB50 WS,

available at www.QB50.eu

SEVENTH FRAMEWORK * * * * * * *

PDR Summary Report

QB50 PDR Summary Report Template

1	CubeSat name / number	BE05 QARMAN		
2	Lead institute	von Karman Institute (VKI)		
		Cem Asma	asma@vki.ac.be	+32 2 888 9970
		Isil Sakraker	sakraker@vki.ac.be	+32 2 359 9423
		Thorsten Scholz	scholz@vki.ac.be	+32 2 359 9423
	Contact person(s)	Gilles Bailet	bailet@vki.ac.be	+32 2 359 9423
3		Lamberto Dell'Elce	Lamberto.DellElce@ulg.ac.be	+32 4 366 9449
		Gaetan Kerschen	g.kerschen@ulg.ac.be	+32 4 366 4852
4	Other institute(s)	University of Liege – for ADCS integration Astrium SAS – for ablative TPS material and characterization Centre Spatial de Liege – for Integration and Testing		
5	CubeSat unit	3U		
6	Science payload	N/A		
7	Other payload	Differential Drag Control Thermal protection system (TPS) Aerodynamic Stability and De-orbiting System (AeroSDS) Aerothermodynamic Measurements		
8	Ground station	Located at VKI (to be built)		
9	Independent Reviewer	Gregory Pinaud (Gregory.Pinaud@astrium.eads.net) Jasper Bouwmeester (Jasper.Bouwmeester@tudelft.nl)		
			G. Pinaud 3.0	Souwmeeste
			E8/03/2013 28	-0]-2013
201	MAN PDR Summary Issue 1		- 7	

- Title page
- Independent reviewer name, contact info and signature
- Overall design
- Own payload
- Sections for mass, power, data budgets
- Reviewer's comments

von Karman Institute for Fluid Dynamics

3

PDR Compliancy Table

Reculement Number	Date: Instant Test	Comolineeu	Verification	Action /	Date
Requirement Number		compnancy	Method	Intent	
	CubeSat System Requirements				
Structural Subsystem					
Q850-5Y5-1.1.1	Cubelats dimensions shall be as shown in Table 1	Compliant	Numerical model and Measurement of FM	Integration test into Test-POD	RR
0850-595-1.1.2	In launch configuration the CubeSat shall fit entirely within the extended volume dimensions shown in Figure 1 for a 3U CubeSat or Figure 2 for a 3U CubeSat, including any protruzions.	Compliant	Numerical model and measurement of the RM	Integration test Into Test-POD	FRR
0850-545-11.3	Cubelat mass shall be no greater than that shown in Table 2 .	Partially Compliant	Numerical model and scaling of FM	Measurement of FM. CubeGat merged with Uig (current masc 3.3kg incl. margin)	FRA
Q850-5Y5-L1.4	The Cubefat centre of gravity shall be located within a sphere of 20 mm diameter, centred on the Cubefat geometric centre.	Compliant	Numerical model and scaling/measurement of FM	Measurement of FM	FRR
0850-515-1.1.5	Total Mass Loss (TML) shall be < 1.0% and Collected Volatile Condensable Material (CVCM) shall be < 0.1% [R02].	Compliant	Vacuum test of EM/FM and sub systems	Verify TML of the ablative TPS	Before CDR and FRR
0850-515-1.1.6	The CubeSat rails and standoffs, which contact the deployer rails, pusher plate, door, and/or adjacent CubeSat standoffs, shall be constructed of a material that cannot cold-weld to any adjacent materials.	Compliant	Use of standard CubeSat rail material	Check contact area between CS and Test- POD with EM/FM	CDR.
Attitude Determination and C	ontrol Subsystem (ADCS)				
0850-515-1.2.1	The CubeSat shall be able to recover from tip-off rates of up to 10 degrees/second within 2 days (TBC before CDR).	Compliant	Simulation of detunibling	Perform dimutetion of GDOF detunibiling dimutetion	CDR
Q850-915-1.2-2 (*)	The CubeSats carrying the science season shall have an attitude control with pointing accuracy of s30° and pointing knowledge of s3° from its initial launch altitude at 350 km down to at least 200 km (TRC before CDR).		N/A - no sciene unit		

- Compliant, partially compliant and non-complaint
- Verification method, action plan and date are important
- Relying on the internal reviewer's check

PDR Philosophy

Create Awareness

Create Awareness

For the CubeSat teams:

- What is expected from us?
- What are the challenges?
- Planning and risks
- What do the others do/think?

For the QB50 Consortium:

- Which CubeSat teams are on board?
- How realistic are the requirements?
- What are the new developments?
- Where are the risks at?
- Can the CubeSat teams make it?

Augment Responsibility

- We are all on the same boat and we need to help each other
- It is indeed an ambitious and challenging mission
- What is the final product?

Network of CubeSats, science, technology, international synergy, educational impact

www.QB50.eu

NB5

PDR Results

Out of **79 potential CubeSat teams**

2 never submitted a proposal or PDR (Argentina, New Zealand)

5 withdrawn because of lack of funding (Austria, 2 Belgium, Czech, UK)

72 remaining

2 Belgium IODs within QB50 but at higher orbits

7 non active teams

65 active members, although some delayed

Thank you and Congratulations !!!

von Karman Institute for Fluid Dynamics

www.OB50.eu

IODs and Science CSs

These numbers are indicative and they will be frozen by end-June

(info obtained from proposals, 4th QB50 WS minutes and PDR)

51 2-unit CubeSats

14 3-unit CubeSats

Preferred science sets:

- 23 Set I INMS
- 17 Set II FIPEX
- 11 Set III mnLP

7

von Karman Institute for Fluid Dynamics

www.QB50.eu

QB5

IODs and Science CSs

All 3U CubeSats are IOD CubeSats, irrespective of whether they fly one of the standard science sensor sets or not.

All 2U CubeSats without standard science sensors are IOD CubeSats.

There is one 2U CubeSats with standard science sensors which is proposed as IOD CubeSats. The category of this CubeSats could be questioned.

- SamSat-QB50 from the Samara State Aerospace University in Russia, which will expand from a 2U-CS to a 3U-CS.

Internal Review Status

An internal QB50 committee of members (from VKI, MSSL and ISIS) have been **checking the PDR results**.

- Summary report and the compliancy table
- Reviewer's signature and comments
- New developments
- Two reviewers per CubeSat team, at least one of them from VKI

We have been sending the **Review Item Discrepancy (RID)** reports to the CubeSat teams.

Information sent is:

Reference Requirement, RID Title, Discrepancy, Initiator Solution

• Information requested is:

Contractor Answer, Action item

www.QB50.eu

Internal Review Status

Reference Requirement	RID Title	Discrepancy	Initiator Solution
QB50-SYS-1.2.2	Attitude knowledge requirement	The required attitude knowledge is +/2 degrees, not +/-5 degrees. This is required for the mNLP.	Please design the ADCS to meet the +/-2 degree pointing requirement.
Page 5 of PDR Summary report	mNLP mass	The mNLP mass as specified in the ICD is to be less than 600 grams. Not 180 grams as estimated in the mass budget.	Please take this into account when updating the mass budget of RioSat.
Page 5 of PDR Summary report	power margin	It is unclear how the power margin is calculated.	Please indicate or clarify how these were calculated. It was imagined that the margin would be calculated using the following formula: (power generated - power consumed) / power generated * 100%
General	Verification Method	"Demonstration" is stated as the verification for certain requirements. Does this mean demonstration on orbit? And if its demonstration on the ground - then what is the difference between demonstration and test?	Please be a bit more clear in the verification method. Specify the type of test / anlaysis that is to be carried out.

von Karman Institute for Fluid Dynamics

www.QB50.eu

Remarks and Conclusions

Mass requirement (2 kg for 2U, 3 kg for 3U)

- This requirement is from Shtil launcher payload mass capability
- Can be increased depending on the new launcher
- Not a killer, we will try to remain flexible
- Miniaturization is an objective for the CS teams
- Ballistic coefficient variation is an advantage

Margins, efficiencies and duty cycles

- A lot of assumptions, are they realistic?
- Margins of new developments at PDR should be ~20%
- Power efficiency of 80% is a very popular number, reality check?
- 5% duty cycle on GPS, reality check?
- Be pessimistic and safe now

Remarks and Conclusions

New or in-house developed subsystems

- COTS with flight heritage and/or high TRL is less of an issue
- Higher risk on these items, higher margins at PDR
- What is the plan for development, integration, risk mitigation?
- What is the TRL now, what will it be at the end, and how?
- http://en.wikipedia.org/wiki/Technology_readiness_level

Technology Readiness Level	Description
TRL 1.	Basic principles observed and reported
TRL 2.	Technology concept and/or application formulated
TRL 3.	Analytical & experimental critical function and/or characteristic proof-of-concept
TRL 4.	Component and/or breadboard validation in laboratory environment
TRL 5.	Component and/or breadboard validation in relevant environment
TRL 6.	System/subsystem model or prototype demonstration in a relevant environment (ground or space)
TRL 7.	System prototype demonstration in a space environment
TRL 8.	Actual system completed and "Flight qualified" through test and demonstration (ground or space)
TRL 9.	Actual system "Flight proven" through successful mission operations

Technology Readiness Levels in the European Space Agency (ESA)^[4]

von Karman Institute for Fluid Dynamics

www.QB50.eu

Remarks and Conclusions

YOUR Review Procedure

- Number of independent reviewers (and their fields of expertise)
- Face-to-face meeting with reviewers?
- Did the reviewer question and challenge?
- Consider peer review as well

Lessons Learned:

- Requirements being revised
- Procedure being revised, CDR is indeed critical
- More reviewers, more review time
- Planning and risk mitigation
- QB50 CubeSat teams are reliable and responsible
- THANK YOU

